Inner Shelf

IMG_0580.JPG

The Inner Shelf is the region between the mid continental shelf, including waters of about 50 m and seaward, and the surfzone where surface waves break in very shallow water of only a few meters depth. The inner shelf connects the wind-driven continental shelf and the shore. There is much interest in how water and material move across the inner shelf. For example, sediment, nutrients, plankton, and waters low in dissolved oxygen or high in CO2 (low pH). It is a challenge to work in the inner shelf due to strong currents and potentially large waves.

Spydell, M. S., S. H. Suanda, D. Grimes, J. McSweeney, J. Lerczak, J. MacMahan, M. Moulton, C. Chickadel, J. MacKinnon, A. Waterhouse, J. Thomson, R. Romeiser, J. Colosi, J. Calantoni, J. Becherer, J. A. Barth and F. Feddersen, 2021. Internal bore evolution across the shelf near Pt. Sal, CA, interpreted as a gravity current. J. Phys. Oceanogr., 51, 3629-3650, https://doi.org/10.1175/JPO-D-21-0095.1.

McSweeney, J. M., M. R. Fewings, J. A. Lerczak and J. A. Barth, 2021. The evolution of a northward-propagating buoyant coastal plume after a wind relaxation event. J. Geophys. Res., 126, e2021JC017720, https://doi.org/10.1029/2021JC017720.

Haney, S., A. Simpson, J. McSweeney, A. F. Waterhouse, M. C. Haller, J. A. Lerczak, J. A. Barth, L. Lenain, A. Palóczy, K. Adams, and J. A. MacKinnon, 2021. Lifecycle of a submesoscale front birthed from a nearshore internal bore. J. Phys. Oceanogr., 51, 3477-3493, https://doi.org/10.1175/JPO-D-21-0062.1.

Kumar, N., J. A. Lerczak, T. Xu, A. Waterhouse, J. Thomson, E. Terrill, S. Suanda, M. Spydell, P. Smit, A. Simpson, R. Romeiser, T. de Paolo, A. Palóczy, S. D. Pierce, A. O’Dea, L. Nyman, J. Moum, M. Moulton, A. M. Moore, A. Miller, R. Mieras, K. Melville, J. McSweeney, J. MacMahan, J. MacKinnon, L. Lenain, M. Kovatch, T. Janssen, S. Haney, M. Haller, K. Haas, D. Grimes, H. Graber, M. Gough, D. Fertitta, F. Feddersen, C. A. Edwards, E. Di Lorenzo, J. Colosi, C. Chickadel, S. Celona, J. Calantoni, J. Becherer, J. A. Barth, and S. Ahn, 2021. The Inner-shelf Dynamics Experiment. Bull. Amer. Meteor. Soc., https://doi.org/10.1175/BAMS-D-19-0281.1.

Becherer, J., J. N. Moum, J. Calantoni, J. A. Colosi, J. A. Barth, J. A. Lerczak, J. M. McSweeney, J. A. MacKinnon, and A. F. Waterhouse, 2020. Saturation of the internal tide over the inner continental shelf. Part 2: Parameterization. J. Phys. Oceanogr., 51, 2565-2582.  https://doi.org/10.1175/JPO-D-21-0047.1.

Becherer, J., J. N. Moum, J. Calantoni, J. A. Colosi, J. A. Barth, J. A. Lerczak, J. M. McSweeney, J. A. MacKinnon, and A. F. Waterhouse, 2020. Saturation of the internal tide over the inner continental shelf. Part 1: Observations. J. Phys. Oceanogr., 51, 2553-2563, https://doi.org/10.1175/JPO-D-20-0264.1.

McSweeney, J. M., J. A. Lerczak, J. A. Barth, J. Becherer, J. A. Colosi, J. A. MacKinnon, J. H. MacMahan, J. N. Moum, S. D. Pierce, and A. F. Waterhouse, 2020. Observations of shoaling internal bores and nonlinear internal waves across the central California inner shelf. J. Phys. Oceanogr., 50, 111-132, https://doi.org/10.1175/JPO-D-19-0125.1.
 

McSweeney, J. M., J. A. Lerczak, J. A. Barth, J. Becherer, J. A. MacKinnon, A. F. Waterhouse, J. A. Colosi, J. H. MacMahan, F. Feddersen, J. Calantoni, A. Simpson, S. Celona, M. Haller and E. Terrill, 2020. Alongshore variability of shoaling internal bores on the inner shelf. J. Phys. Oceanogr., 50, 2965-2981, https://doi.org/10.1175/JPO-D-20-0090.1.

Lerczak, J., J. A. Barth, S. Celona, C. Chickadel, J. Colosi, F. Feddersen, M. Haller, S. Haney, L. Lenain, J. MacKinnon, J. MacMahan, K. Melville, A. O'Dea, P. Smit, and A. Waterhouse, 2019. Untangling a web of interactions where surf meets coastal ocean, Eos, 100https://doi.org/10.1029/2019EO122141.

Suanda, S. H. and J. A. Barth, 2015. Semidiurnal baroclinic tides on the central Oregon inner shelf. J. Phys. Oceanogr., 45,

2640-2659, doi: http://dx.doi.org/10.1175/JPO-D-14-0198.1. https://doi.org/10.1175/JPO-D-14-0198.1

Suanda, S. H., J. A. Barth, R. A. Holman and J. Stanley, 2014. Shore-based video observations of nonlinear internal waves across the inner shelf. J. Atmos. Oceanic Technol., 31, 714–728. Supplementary movie available at https://doi.org/10.1175/JTECH-D-13-00098.1

Kirincich, A. R. and J. A. Barth, 2009. Spatial and temporal variability of inner-shelf circulation along the central Oregon coast during summer. J. Phys. Oceanogr., 39, 1380–1398. https://doi.org/10.1175/2008JPO3760.1

Kirincich, A. R., S. J. Lentz and J. A. Barth, 2009. Wave-driven inner-shelf motions on the Oregon coast. J. Phys. Oceanogr., 39, 2942-2956. https://doi.org/10.1175/2009JPO4041.1

Tapia, F. J., S. A. Navarrete, M. Castillo, B. A. Menge, J. C. Castilla, J. Largier, E. A. Wieters, B. Broitman and J. A. Barth, 2009. Thermal indices of upwelling effects on inner-shelf habitats. Prog. Oceanogr., doi:10.1016/j.pocean.2009.07.035. https://doi.org/10.1016/j.pocean.2009.07.035