Inner Shelf

The Inner Shelf is the region between the mid continental shelf, including waters of about 50 m and seaward, and the surfzone where surface waves break in very shallow water of only a few meters depth. The inner shelf connects the wind-driven continental shelf and the shore. There is much interest in how water and material move across the inner shelf. For example, sediment, nutrients, plankton, and waters low in dissolved oxygen or high in CO2 (low pH). It is a challenge to work in the inner shelf due to strong currents and potentially large waves.

McSweeney, J. M., J. A. Lerczak, J. A. Barth, J. Becherer, J. A. Colosi, J. A. MacKinnon, J. H. MacMahan, J. N. Moum, S. D. Pierce, and A. F. Waterhouse, 2020. Observations of shoaling internal bores and nonlinear internal waves across the central California inner shelf. J. Phys. Oceanogr., 50, 111-132, https://doi.org/10.1175/JPO-D-19-0125.1.
 

McSweeney, J. M., J. A. Lerczak, J. A. Barth, J. Becherer, J. A. MacKinnon, A. F. Waterhouse, J. A. Colosi, J. H. MacMahan, F. Feddersen, J. Calantoni, A. Simpson, S. Celona, M. Haller and E. Terrill, 2020. Alongshore variability of shoaling internal bores on the inner shelf. J. Phys. Oceanogr., in press. 

Kumar, N., James A. Lerczak, Tongtong Xu, Amy Waterhouse, Jim Thomson, Eric Terrill, Sutara Suanda, Matthew Spydell, Pieter Smit, Alexandra Simpson, Roland Romeiser, Tony de Paolo, André Palóczy, Stephen D. Pierce, Annika O’Dea, Lisa Nyman, James Moum, Melissa Moulton, Andrew M. Moore, Arthur Miller, Ryan Mieras, Ken Melville, Jacqueline McSweeney, Jamie MacMahan, Jennifer MacKinnon, Luc Lenain, Michael Kovatch, Tim Janssen, Sean Haney, Merrick Haller, Kevin Haas, Derek Grimes, Hans Graber, Matt Gough, David Fertitta, Falk Feddersen, Christopher A. Edwards, Emanuele Di Lorenzo, John Colosi, Chris Chickadel, Sean Celona, Joe Calantoni, Johannes Becherer, John A. Barth, Seongho Ahn, 2020. The Inner-shelf Dynamics Experiment. Bull. Amer. Meteor. Soc., submitted. 

Lerczak, J., J. A. Barth, S. Celona, C. Chickadel, J. Colosi, F. Feddersen, M. Haller, S. Haney, L. Lenain, J. MacKinnon, J. MacMahan, K. Melville, A. O'Dea, P. Smit, and A. Waterhouse, 2019. Untangling a web of interactions where surf meets coastal ocean, Eos, 100https://doi.org/10.1029/2019EO122141.

Suanda, S. H. and J. A. Barth, 2015. Semidiurnal baroclinic tides on the central Oregon inner shelf. J. Phys. Oceanogr., 45,

2640-2659, doi: http://dx.doi.org/10.1175/JPO-D-14-0198.1. https://doi.org/10.1175/JPO-D-14-0198.1

Suanda, S. H., J. A. Barth, R. A. Holman and J. Stanley, 2014. Shore-based video observations of nonlinear internal waves across the inner shelf. J. Atmos. Oceanic Technol., 31, 714–728. Supplementary movie available at https://doi.org/10.1175/JTECH-D-13-00098.1

Kirincich, A. R. and J. A. Barth, 2009. Spatial and temporal variability of inner-shelf circulation along the central Oregon coast during summer. J. Phys. Oceanogr., 39, 1380–1398. https://doi.org/10.1175/2008JPO3760.1

Kirincich, A. R., S. J. Lentz and J. A. Barth, 2009. Wave-driven inner-shelf motions on the Oregon coast. J. Phys. Oceanogr., 39, 2942-2956. https://doi.org/10.1175/2009JPO4041.1

Tapia, F. J., S. A. Navarrete, M. Castillo, B. A. Menge, J. C. Castilla, J. Largier, E. A. Wieters, B. Broitman and J. A. Barth, 2009. Thermal indices of upwelling effects on inner-shelf habitats. Prog. Oceanogr., doi:10.1016/j.pocean.2009.07.035.   https://doi.org/10.1016/j.pocean.2009.07.035

© 2023 by John Roberts. Proudly created with Wix.com