top of page

Hypoxia and Ocean Acidification

When ocean waters contain so little dissolved oxygen that marine organisms start to suffer, this is called hypoxia. Hypoxia is caused by the microbial decay of organic matter that robs oxygen from the water. This can occur when excess nutrients from land-based sources run off into the coastal ocean to cause plankton blooms that subsequently decay and lead to hypoxia. Off Oregon, nutrients are supplied to the light zone in the coastal ocean by upwelling. Through particular combinations of upwelling, ocean stratification and currents, regions of hypoxia near the sea floor may form during the summer upwelling season, April to September. Ocean acidification is the lowering of the ocean’s pH through the transfer of human-produced CO2 into ocean waters. Ocean acidification is exacerbated in coastal upwelling zones like off Oregon when upwelling brings waters already high in CO2, hence low pH, close to shore.

Whitefield, C. R., C. Braby, and J. A. Barth, 2021. Capacity building to address ocean change: Organizing across communities of place, practice and governance to achieve ocean acidification and hypoxia resilience in Oregon. Coastal Management, 49:5, 532-546,

Chan, F., J. A. Barth, K. J. Kroeker, J. Lubchenco, and B. A. Menge, 2019. The dynamics and impact of ocean acidification and hypoxia: Insights from sustained investigations in the northern California Current Large Marine Ecosystem. Oceanography, 32(3), 62-71,

Durski, S. M., J. A. Barth, J. C. McWilliams, H. Frenzel and C. Deutsch, 2017. The influence of variable slope-water characteristics on dissolved oxygen levels in the northern California Current System. J. Geophys. Res., 122, doi:10.1002/2017JC013089.

Chan, F., Barth, J. A., Blanchette, C. A., Byrne, R. H., Chavez, F., Cheriton, O., Feely, R. A., Friederich, G., Gaylord, B., Gouhier, T., Hacker, S., Hill, T., Hofmann, G., McManus, M. A., Menge, B. A., Nielsen, K. J., Russell, A., Sanford, E., Sevadjian, J., and Washburn, L., 2017. Persistent spatial structuring of coastal ocean acidification in the California Current System. Nature Scientific Reports, 7, 2526, doi: 10.1038/s41598-017-02777-y

Keller, A. A., L. Cianelli, W. W. Wakefield, V. Simon, J. A. Barth and S. D. Pierce, 2017. Species-specific responses of demersal fishes to near-bottom oxygen levels within the California Current large marine ecosystem. Mar. Ecol. Prog. Ser., 568, 151-173, PDF

Adams, K., J. A. Barth and R. K. Shearman, 2016. Intraseasonal cross-shelf variability of hypoxia along the Newport, Oregon, Hydrographic line. J. Phys. Oceanogr., 46, 2219-2238, DOI: 10.1175/JPO-D-15-0119.1.​​

Keller, A., L. Ciannelli, W. W. Wakefield, V. Simon, J. A. Barth and S. D. Pierce, 2014. Occurrence of demersal fishes in relation to near-bottom oxygen levels within the California current large marine ecosystem. Fisheries Oceanography, 24, 162–176.

Adams, K. A., J. A. Barth and F. Chan, 2013. Temporal variability of near-bottom dissolved oxygen during upwelling off central Oregon. J. Geophys. Res., 118, doi:10.1002/jgrc.20361.

Pierce, S. D., J. A. Barth, R. K. Shearman and A. Y. Erofeev, 2012. Declining oxygen in the Northeast Pacific. J. Phys. Oceanogr., 42, 495-501.

Keller, A., V. Simon, F. Chan, W. W. Wakefield, M. E. Clarke, D. Kamikawa, E. L. Fruh and J. A. Barth, 2010. Demersal fish and invertebrate biomass in relation to an offshore hypoxic zone along the U.S. West Coast. Fisheries Oceanography, 19, 76-87.

Chan, F., J. A. Barth, J. Lubchenco, A. Kirincich, H. Weeks, W. T. Peterson, and B. A. Menge, 2008. Novel emergence of anoxia in the California Current System. Science, 319, 920. 10.1126/science.1149016

Grantham, B. A., F. Chan, K. J. Nielsen, D. S. Fox, J. A. Barth, A. Huyer, J. Lubchenco and B. A. Menge, 2004. Upwelling- driven nearshore hypoxia signals ecosystem and oceanographic changes in the northeast Pacific. Nature, 429, 749–754. 10.1038/nature02605 

bottom of page